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Abstract

The segment tree data structure allows for high performance range
queries and updates by storing information for contiguous sub-
sequences in higher nodes of the tree. In this paper, we explore
parallel CPU and GPU implementations of segment trees, including
fine-grained locking and lock-free approaches. Further, we compare
optimizations such as delaying updates to higher levels of the tree,
prefetching node data on updates, and padding node data to fill
cache lines. We tested various different workloads and optimization
combinations, analyzing different tradeoffs. Our findings suggest
that the lock-free approach with the delayed updates and prefetch-
ing achieves a 9x speedup over serial with a high update proportion
and a 5x speedup over serial with a high query proportion and
constant combining functions.
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1 Background
1.1 The Range Query Problem

Given an array A, a range query on that array asks about a property
of some continuous range of that data from A[i] to A[j — 1]. For
example, one might be interested in the sum of the numbers from
i to j. One approach to supporting such a range query is to loop
over the range and compute the sum itself. A secondary approach
is to precompute prefix sums and return the sum over a range
as the difference A[j] — A[i — 1], provided i > 0. Regardless of
the approach, we would like to be able to support updating the
array and re-querying. In the first approach, updates can be done
in constant time, whereas in the second approach, updates must
persist to all prefixes.

This gives the first approach, a manual range query, an O(1)
update and an O(n) range query and the second approach, prefix
queries, an O(n) update and an O(1) range query. In workloads
where one operation is extremely rare, this may suffice, however, in
workloads where updates and range queries are roughly balanced,
then both operations are O(n) on average.

1.2 Introduction to Segment Trees

Segment trees (SegTrees) implement O(log n) updates and range
queries by using a complete tree to represent an array. On the
bottom level of the tree is the array. On the next level is half the
nodes of the lower level with sub computations A[0] + A[1], A[2] +
A[3], and so on. This pattern continues to the root of the tree which
contains the result of a query on the entire array: query(0, n), where

n is the size of the array. Updates of array positions include updating
all nodes on the path from leaf to the root. Therefore, updates
write to O(log n) nodes. Range queries involve determining which
leaf and interior nodes, which represent contiguous subsequences,
compose the range query and reading data from these nodes to
complete a query. Since each query reads at most two nodes per
level, queries are also O(logn) [2].
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Figure 1: SegTree representation of an array.

In figure 1, the top visual shows how an array is represented as
a SegTree using a sum combining function. The leftmost node on
the orange level is a sum of its two children. Generally for SegTrees
with combining function f, a node u on level k equals
f(leftChild(u),rightChild(u)) with these child nodes on level
k+1. The bottom visual shows how these SegTrees are implemented
as arrays in implementation. This allows for simple traversal of the
SegTree. If the index of a node is i, it’s parent has index [%J, left
child has index 2i + 1, and right child has index 2i + 2 [2].

SegTree combining functions determine the outputs of any range
query by applying the combining function f to the queried con-
tiguous subsequence: query(i,i+3) = f([i], f(A[i+ 1], Ali+2]))
and query(i, j) = f(A[il, f(Ali + 1],..., A[j — 1])). With f = +,
query(i,j) = A[i] + A[i + 1] + ... + A[j — 1] = sum of subsequence
from i to j-1, inclusive.

An associative function f has the property f(a,f(b,c)) =
f(f(a,b),c). SegTrees store the results of subsequences in higher
level nodes of the array and support fast queries by reading at most
O(log n) nodes to minimize data reading. Therefore, on queries, the
combining function is called on pre-combined sequences, so it must
be associative for correctness [2].



1.3 Parallelism Opportunities and Challenges

With updates corresponding to traversing a tree from leaf to root,
there is opportunity for parallelizing updates by having multiple
processors perform separate updates along separate paths. Alterna-
tively, parallelism could be attained by having multiple processors
update separate array positions for a single update. Moreover, since
range queries are read-only, multiple processors should be able
to range query at the same time, provided no updates take place
between subsequent range queries. These ideas present many op-
portunities for parallelism, as there are many ways to perform
collaborative or per-processor updates.

We would like a query at operation index k to reflect all updates
at operation indices 0, ..., k — 1, which we’ll refer to as serial cor-
rectness. In any operation sequence, a sequence of updates and
range queries, only contiguous subsequences (chunks) of updates
or queries can be processed in parallel for serial correctness. This
is because each query must be completed before any subsequent
updates. Otherwise, a later update might overwrite a query read,
causing an incorrect query output. Moreover, each update must be
completed before any query. Otherwise, the query might read stale
data. We refer to this as the SegTree consistency problem. When
considering parallelizing over operations, the SegTree consistency
problem implicitly requires synchronization of threads after each
update or query chunk is processed.

Chunking constrains the set of possible workloads we consider,
but is necessary to parallelize the problem. In a workload without
this chunking pattern, the SegTree consistency problem suggests
that a serial implementation will have the best performance since
there is no guarantee of chunks of large independent computations
that parallel implementations can exploit. Thus, considering chunk-
ing is necessary to produce meaningful parallel implementations.

Additionally, a call to update (i, x) usually assigns A[i] = x and
propagates this update up the path from leaf to root [2]. This style
of updating makes updates inherently sequential: query(i,j) only
relies on the most recent updates to indices between i and j. To allow
for parallelization across updates, we choose the style of updating
that increments or combines the previous array value with x. In our
SegTrees, update(i,x) assigns A[i] = f(A[i],x) where f is the
chosen combining function. When f = +, update (i, x) increments
Ali] by x: A[i] = A[i] + x. This change to the problem, combined
with the associative property of the combining function, allows for
update chunk parallelization: all permutations of updates within a
chunk result in the same SegTree.

2 Approach

In each implementation, we scan through the sequence of oper-
ations, updating the SegTree data structure on updates and pop-
ulating a query results array on queries. All query and update
operations use logic inspired from the 451 textbook [2].

2.1 Trace Generation

Our main code parses input trace files, which contain the inputs nec-
essary for any of our implementations. Each trace file first defines
the array size, number of updates, and number of queries. Next,
trace files contain the operations we wish to perform: updates on
index i with delta value x are represented by u i x and queries
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from index i to j are represented by q i j. Finally, each trace
file concludes with the results we expect to achieve when query-
ing, which we can compare against our actual results to validate
correctness.

The use of trace files made testing much easier. We wrote code
to automatically generate traces given user-definable inputs such
as the chunk size of operations, the combining function to be used,
array size, number of operations, query-to-update ratio, and more.
For more information on trace generation, please refer to our code.

2.2 CPU Implementations

For our CPU implementations, we used C++ code and targeted high
performance on both GHC and PSC machines.

2.2.1  Serial implementation. Our first implementation was serial,
meant to serve as a baseline with which to compare our other
implementations. In this approach, the CPU scans through the
operations, completing one at a time.

2.2.2  Coarse-grained locking implementation. We then moved to
a coarse-grained locking implementation, which locks the entire
SegTree on each operation. Threads, created via the C++ Standard
Library’s std: : thread class [4], dynamically fetch operations to
execute by atomically incrementing a shared operation index. We
tracked the correct position to update in the query results array
with a second atomic. We did not further optimize the coarse imple-
mentation, since its locking makes it slower than any serial imple-
mentation. The implementation was mainly to learn std: : thread
usage.

2.2.3  Fine-grained locking implementation. After implementing
coarse-grained locking, we moved onto fine-grained locking. We
initially thought that this would be as simple as locking over array
positions, however, due to the SegTree consistency problem, up-
dates and queries cannot overlap. This led us to change our trace
generation code to include a chunk size parameter, which defines
the size of each update or query chunk that we could parallelize
over. With chunk processing requiring synchronization between
batches, we could track which section of the query results array we
needed to populate on a query batch. Statically mapping operations
to threads enabled threads to compute the exact index of the query
results array to update, allowing us to omit the shared atomics that
we had previously used to track the operation and query results
indices.

We initially performed separate chunks and synchronized be-
tween chunks by spawning update workers or query workers, and
joining these workers after each batch. This implementation had
too much thread overhead, ideally, we’d want to spawn threads once
and delete them after all operations. We were able to implement this
by using barriers as our form of between-batch synchronization.

In terms of actual operation processing, updates require each
spawned thread to lock over the node currently being updated
to ensure races do not occur. Queries can be performed without
locking, since they are read-only. There is synchronization in the
form of a barrier between update and query batches to eliminate
the SegTree consistency problem.

Initially, we were locking over the node being updated, N¢, and
its two children, C; and C,, thinking that if children were updated
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during the update of N, there could be races due to the memory
consistency problem. This is due to the fact that if N were up-
dated with a stale child, the thread who caused staleness in the
child did so via an update, and thus it must pass through N, since
all updates persist to the root. Locking over only the node being
updated imposes a sequential order on threads who pass through
that node. Therefore, though at any given time the SegTree could
reflect staleness, after an entire batch of updates, the SegTree will
be correct due to associativity of the combining function. Removing
the locks over the children caused a speedup in the code without
affecting correctness.

2.24 Lock-Free implementation. To move from our fine-grained
implementation to a lock-free implementation, we simply changed
lock-based updates to use compare-and-swap (CAS). With high
overhead due to locking, this should provide a speedup since im-
plementing CAS makes both queries and updates lock-free.

Initial testing indicated our lock-free code had races. We identi-
fied that this was due to children being updated as their parent is
being updated, similar to the issue we’d identified while implement-
ing the fine version. The difference in the two implementations is
that locking over nodes imposes a sequential order of how each
node will be passed through by threads, while using CAS for node
updates does not guarantee this.

Our solution was to check that children of a node had the same
values after an attempted CAS update as before the CAS update. If
this were not the case, we would reperform the CAS update. This
method, inspired by a double CAS, corrected the race issues [1].

2.2.5 Delaying Updates for Higher Levels: The Levels Saved Op-
timization. Although we’d implemented chunked operations and
fine-grained and lock-free implementations that could use multiple
threads, timing revealed the parallel implementations were still
slower than the serial version of the code. We attributed this to lock
contention and contention over which thread progresses in the CAS
implementation. To avoid this contention, we introduced the levels
saved optimization. A levels saved parameter of k indicates to the
parallel implementations that the top k levels of the SegTree will
not be computed individually by threads during updates. The top
level corresponds to level 0, so a levels saved parameter of k means
that updates occur as described up to level k, then we sequentially
perform updates per level after all updates in an update batch have
occurred.

This achieves a speedup since we no longer have to lock over
the top nodes, which otherwise are highly contended over. Instead,
we wait via a barrier for all updates to complete through the kth
level, then persist these changes to the root. At last, our parallel
implementations of the problem were finally outperforming the
sequential version.

Interestingly, we found it best (via timing code) to assign nodes
in the second sweep contiguously to threads in the fine implemen-
tation but interleaved to threads in the lock-free implementation.
We believe this is due to the fact that the lock-free implementation
uses an atomic integer vector while the fine-grained implementa-
tion uses an integer vector. Exactly why this is the case is outside
the scope of this project. Moreover, some later implementations
perform the second sweep with one thread, so we do not focus on
this optimization.

2.3 GPU Implementations

For our GPU implementations, we used C++ and CUDA code, tar-
getting high performance on the GPUs on the GHC machines.

2.3.1 CUDA Prefix-sums implementation. As discussed in the back-
ground, one way to perform O(n) updates and O(1) queries is to
maintain a prefix sums array. Updating position i then requires up-
dating positions i +1, ..., n — 1 with the same delta. We hypothesized
that a GPU could very quickly perform updates using warps and
vectorized instructions, since updates to a prefix sums array would
be to contiguous sections.

This implementation allowed the SegTree to quickly be com-
puted on the device, but the allocation of the SegTree on the GPU
(device) meant that data movement was necessary. Either we could
compute query results on the device and move them to the host, or
we could move the SegTree from the device to the host and com-
pute query results on the host. We tried both methods, even trying
asynchronous memory movement for the query results (since query
results are not necessary until the trace is finished), however, we
could not beat even our serial implementation.

2.3.2 CUDA Levels implementation. We originally planned on cre-
ating a CUDA manual range query implementation where we sim-
ply keep the array, performing updates in O(1) and manually query-
ing in O(n). However, due to the poor performance of our CUDA
Prefix-sums implementation, we pivoted away from this.

Instead, we created a CUDA Levels implementation. In this im-
plementation, we use the SegTree array representation. Updates to
the leaves are performed in parallel by different warps which use
an atomic operator to perform individual updates. After all of these
updates have been performed, we compute each remaining level in
parallel with warps, all the way to the root.

More specific timing code identified that the SegTree’s main-
tenance (updating) and querying were fastest in this implemen-
tation. However, this implementation is also severely limited by
the amount of data movement between the host and device that
must occur. This implementation was about 4x faster than our
prefix-sums implementation.

2.4 Further Performance Optimizations

Timing code indicated our CUDA implementations were slower
than the serial, fine-grained, and lock-free implementations. Even
though the CUDA levels implementation was faster than the CUDA
prefix implementation, it was still anywhere from 2-8x slower than
our lock-free implementation. More specific timing code indicated
that this was due to the data movement between the host and
GPU. We thus explored further performance optimizations on our
threaded CPU implementations: lock-free and fine-grained locking.

2.4.1  Prefetching. Within a single SegTree update, writes must
occur on every node on the path from the leaf corresponding to the
update index to the root. This also involves reading the children of
updated nodes on the path. With the levels saved optimization, this
path is compressed to the leaf to its first saved ancestor. Looking
back to Figure 1, each tree level is stored as a contiguous subse-
quence of the array data structure. Therefore, traversing the path



involves jumping back in the array, highlighting the lack of spa-
tial locality on an update. This suggests that prefetching these
predictable reads would improve performance.

Additionally, once we reach our saved levels portion of the up-
date, we iterate across nodes within the same level, rather than
jumping levels. Without padding, reading a node on level k will
bring the subsequent nodes on level k into the cache. This inherent
cache line prefetching within our algorithm removes the need to
prefetch during the levels saved portion of updates.

In contrast, the sequence of interior and leaf node reads nec-
essary for queries is unpredictable and dynamically computed to
achieve O(logn) query complexity. Therefore, we did not imple-
ment prefetching for queries.

To reach our final prefetching strategy, we had to make two
major decisions: what do we prefetch and how early do we do it.
Each node in an update must read its two children and combine
them. Our initial algorithm prefetched the current node’s parent and
it’s sibling, the other child of the parent. However, prefetching this
sibling is unnecessary since an earlier prefetch to the current node
will bring the sibling to the cache via cache line prefetching and the
adjacency of siblings. To find the optimal aggression of prefetching,
we added a command line argument that specifies how many levels
up to prefetch. The outcome of the prefetching performance boost
and testing different levels of prefetching aggression are shown
and discussed in the results section.

2.4.2  Padding. False-sharing occurs when two different threads re-
peatedly attempt to gain exclusive access to different pieces of data
on the same cache line. Despite the data having no dependencies
to each other, cache lines are the smallest level of granularity for
achieving this exclusive access, so the threads must falsely share.
With respect to our CPU implementations, this occurs for both
lock-free and fine-grained locking approaches: updating a node
invalidates the entire cache line. It is very likely that another thread
wants to update a node on the same level and now must read the
data and request exclusive access again. This same reasoning is
also true for locks on nodes if they are not padded. Therefore, we
padded our mutex locks for our padded fine-grained locking and
lock-free implementations.

Padding also has costs: increasing the size of every array posi-
tion to a full cache line increases the data structure size and cache
footprint. The set of memory being worked with is much larger,
decreasing the number of nodes that can fit in each cache. There-
fore, an average memory access could actually take longer, even
after removing false sharing. In our results section, we discuss the
outcome of padding on these CPU implementations.

3 Testing

For testing, we began hyperparameter tuning by testing differ-
ent amounts of levels saved on the GHC machines. After this, we
largely used scripts on the PSC machines. We measured implemen-
tation performance varying metrics such as thread counts, levels
of prefetching aggression, etc., which will be described more in the
results section.
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3.1 Traces

Our traces varied the array size, the number of operations, and
the chunk size, as shown in Table 1. For all of these traces, the
combining function is addition, the query proportion is 0.5, and the
update delta values are randomly generated in the range (-20,20),
with the intent of keeping the partial and total sums about zero.

Name ‘ Array Size ‘ Operations ‘ Chunk Size
Small 216 = 65536 218 = 262144 | 210 = 1024
Medium | 218 = 262144 | 218 = 262144 | 211 = 2048

Large 220 = 1048576 | 220 = 1048576 | 2'% = 4096
Table 1: The main trace files for testing,.

By testing at different array sizes, we could see how themes such
as contention and speedup are affected by different array sizes. We
note that the CUDA implementations were profiled on the GHC
machines since we were not given GPU compute capability on the
PSC machines.

3.2 Nonconstant Combining Functions

One workload we wanted to explore during this analysis was our
implementations’ performance using non-constant combining func-
tions. A usual problem with analyzing non-constant combining
functions for a SegTree workload is that the root of the SegTree,
representing the combination of all values in the array, can become
too large. For our nonconstant combining function, we still use
the same traces (operation: +), but we simulate the function taking
longer for larger levels.

Let the time of the actual computation required to compute a
node under the sum implementation be k seconds. Our nonconstant
combining function simulates nonconstancy by taking k seconds
to acutally combine the values and update the parent then sleeping
for an additional k - [ seconds, where [ is 1 at the leaf level, 2 at
the next level up, and so on until / is equal to the number of levels
at the root. This has the effect of making our combining function
O(l) where [ is the current level (however, in this definition, the
leaves correspond to level 1 whereas we’ve previously used level 0
to define the root node).

4 Results

Our goal in this project was to create optimized parallel implementa-
tions of a data structure supporting updates and range queries that
minimized wall-clock time and compared favorably to the perfor-
mance of a serial algorithm across a variety of different workloads.
When discussing wall-clock time, we focus on the computation time
because initialization time is the same across implementations.

4.1 Speedup Graphs

We show our speedup graph for the computation speedup as a func-
tion of the number of threads for the small, medium, and large traces
in Figure 2. Speedup here is defined as CompTime (mode, threads=1)
/ CompTime(mode, threads=k) where we vary k and the mode is
either fine or lock-free. Therefore, while it may seem as though at
each array size, the fine implementation out scales the lock-free
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implementation, this is due to the raw speed of the lock-free imple-
mentations at a thread count of one. Each implementation scales
better as the array size increases, which shows how contention
limits speedup, since contention is less frequent on larger arrays.
We attribute our poor scaling at high thread counts to the fact that

Computation Speedup versus Number of Threads for small,
medium, large tests
6 FINE Comp Speedup,
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== FINE Comp Speedup,
Medium

== FINE Comp Speedup,
4 Large

LF Comp Speedup,
Small

== LF Comp Speedup,
/\ Medium
2
== | F Comp Speedup,
g

Large

Computation Speedup

1 2 4 8 16 32 64

Number of Threads

Figure 2: Computation speedup over one thread.

the workload with a constant combining function is memory-bound
as opposed to compute-bound. Therefore, the overhead due to ad-
ditional threads is not worth splitting the computation. However,
this is discussed more in the nonconstant results section.

4.2 Impact of the Levels Saved Optimization

More comprehensively discussed in the approach section, this opti-
mization saves the top [ levels for a second sweep of updates. We
discuss the results of differing [ in this section. Since we wanted to
find the optimal levels saved hyperparameter before testing on the
PSC machines, these tests are the only tests in the results section
conducted on the GHC machines.

4.2.1 Fine-Grained Locking v.s. Lock-Free. In Figure 3, the two
graphs show the computation speedup of the fine-grained lock-
ing and lock-free implementations across 4 and 8 threads for the
medium and small traces on the GHC machines. Speedup here is de-
fined as CompTime(mode, threads, levels_saved=0) divided by
CompTime(mode, threads, levels_saved=k) where we vary k.

In the medium trace, the SegTree has 19 levels, and performance
is optimized at 16 levels saved for fine and 14 levels saved for lock-
free. In the small trace, the SegTree has 17 levels, and performance
is optimized at 14 levels saved for fine and 12 levels saved for lock-
free. Across both traces and thread counts, the optimal number of
unsaved levels (the number of total levels less the optimal number
of saved levels), including the leaves which must be updated, is 3
for fine and 5 for lock-free.

The difference between these two implementations lies in per-
formance under contention. The fine-grained locking implementa-
tion uses std: :mutex locks and the lock-free implementation uses

compare-and-swap loops, specifically std: : compare_exchange_weak

with relaxed memory order [3, 5]. Every update must persist to the
roots, so the locks in levels closer to the root are more contended
for than levels closer to the leaves. In contrast, the CAS loops con-
tinuously, trying to win access to the contended data, requiring

Computation Speedup Over No Levels Saved, Medium

4 == Fine CS, 8 Threads,
Medium

== LF CS, 8 Threads,
Medium

©

Fine CS, 4 Threads,
Medium

== LF CS, 4 Threads,
Medium

N

0 5 10 15

Number of Levels Saved

Computation Speedup Over No Levels Saved, Small

4 == Fine CS, 8 Threads,
Small

== Fine CS, 4 Threads,
Small

/\ LF CS, 8 Threads,
Small
w= LF CS, 4 Threads,

Small

©

[N}

0 5 10 15

Number of Levels Saved

Figure 3: Computation speedup over no levels saved.

less locking overhead. Since CAS loops provide atomic updates at
a lower overhead than locking, it makes sense that a lock-free im-
plementation can use multiple threads to perform atomic updates
under higher levels of contention than a locking equivalent.

Interestingly, it didn’t matter whether the array was small or
medium, the optimal number of unsaved levels was the same. We
attribute this to the fact that the workload is memory-bound, which
we discuss more in the nonconstant results section.

4.2.2 Impact of Levels Saved on Prefetching. Combining prefetch-
ing with levels saved allows for quicker updates on the path to the
lowest saved level. This changes the optimal number of levels saved
under different prefetching strategies.

Figure 4 shows the computation speedup over no levels saved
by the prefetching optimized fine-grained locking and lock-free ap-
proaches. Speedup here is defined as CompTime (mode, threads=16,
P, levels_saved=0) divided by CompTime(mode, threads=16,
P, levels_saved=k), similarly to the previous section. There-
fore, the speedup graph does not compare performances across
implementations, but it does allow for comparison across prefetch
aggressions and across different levels saved within implementa-
tions.

We performed this testing on the PSC machines with the large
trace and 16 threads. We used the large trace because its in larger
arrays that prefetching will face less contention, and the thread
count was chosen as a baseline. The large trace has 21 total levels.
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P = 1 corresponds to a node prefetching their parent while it’s
being updated, while P = 3 corresponds to a node prefetching
their great-grandparent. Prefetching more aggressively, as in the
latter case, offers a higher guarantee that the data will have reached
the processor by the time it is needed, but this strategy is faces a
higher risk that the prefetched cache line will be evicted or have its
exclusive access downgraded via contention from another thread by
the time it is used. This is because the higher a node in the SegTree,
the more leaves and thus updates are in its subtree. Prefetching less
aggressively has the opposite effects. The data may not reach the
cache in time, but it has a lower risk of being evicted or downgraded
from exclusive access.

As seen in Figure 4, the optimal lock-free levels saved hyperpa-
rameter under each prefetch strategy is less than the fine-grained
optimal levels saved hyperparameter, consistent with our findings
from the previous section. Looking at the fine-grained locking lines,
all 3 are incredibly similar, and there does not seem to be a clear rela-
tionship between prefetch levels and optimal levels saved. However,
the variation among the lock-free lines is much greater. The obvious
computation speedup winner is lock-free with P = 1, achieving a
computation time of 60.6 milliseconds which is 5 fewer than the
fastest of P=2 and P=3. The data suggests that the risk of contention
and evicting or downgrading prefetched cache lines outweighs the
risk of data not arriving in time. The tradeoff here is between saving
fewer levels, so that prefetching can take a greater effect due to
longer leaf-to-last-unsaved-ancestor-paths, and saving more levels,
so that contention over the top levels, and thus lock overhead, does
not dominate.

4.3 Varying Query-to-Update Ratio

A crucial factor distinguishing update and range query workloads
is the ratio of queries to updates.

Figure 5 shows the computation time of our best SegTree im-
plementations across the proportion of updates that are queries,
holding all other workload variables fixed.

With parameters including levels saved, number of threads, and
prefetching aggression, we used an iterative approach to find the
optimal configurations for each implementation. First, we tested
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Figure 5: Computation time across query proportions on
medium trace.

all possible levels saved across 2, 4, and 8 threads on the GHC
machine to find the optimal levels saved hyperparameter input.
For the prefetching implementations, we tested all levels saved
with P=1, P=2, and P=3 prefetching aggression. Then, we tested
all possible number of threads with levels saved and prefetching
aggression held constant on the PSC machines (we omit this graph,
it is a happy medium with a peak at a thread count of 32, similar to
the speedup graphs).

This testing used the PSC machines and the optimal number of
levels saved and threads for the fine and lock-free implementations.
The algorithms completed the medium workload.

4.3.1 Query Ratio Affects Parallel Speedup Over Serial. At low
query proportions, it is clear that the fine and lock-free implemen-
tations are faster than the serial implementation by about 2-4x. As
the query proportion increases, the computation time of the serial
algorithm increases linearly while the other CPU implementations
stay relatively constant. On query heavy workloads, the parallel
CPU implementations are 5-9x faster than the serial algorithm.

The serial implementation struggles with queries for multiple
reasons. First, accesses at each tree level are not contiguous for
queries. If a range query from i to j contains a block, or a node at
a higher tree level, then subsequent levels must search outside of
this block to fill in the range query gaps. This hurts spatial locality
compared to updates which read neighboring children. Second,
queries recursively search through the tree, often using multiple
recursive calls in a single level of the recursion, spawning recursive
branches. Meanwhile, an update has a straight path from the leaf
to the root.

When parallelizing across operation chunks, threads must con-
tend for nodes during updates since they require an exclusive cache
state to write to the node. On queries, there is no resource con-
tention. This difference between operations mitigates the speed
advantage that updates inherently have over queries in SegTrees
as shown in the serial line. This results in no significant relation-
ship between query-to-update ratio and computation time for the
parallel CPU implementations.

4.3.2 CUDA Levels Struggles With Thread Divergence in Queries.
The performance of the parallel GPU implementation, CUDA levels,
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is very similar to the serial implementation for slightly different
reasons. CUDA levels performs updates on the device in kernels
one level at a time, saving all levels but the bottom, the leaf nodes.
Only the bottom level relies on the actual indices being updated.
All other levels update all nodes on their level. It performs the
queries on the host due to the divergence of queries. In an earlier
version, CUDA levels called kernels to allocate queries to threads,
but the divergence of the CUDA threads and overhead of kernel
calls outweighed the gained parallel arithmetic resources. With
respect to CUDA threads’ strengths, there is no similarly parallel
aspect of query chunks compared to update chunks.

4.3.3  Parallel CPU Implementations Performance Analysis. As shown
in Figure 5, lock-free with prefetching (P = 1) has the best per-
formance on the medium trace across all query ratios with each
implementation using their optimal hyperparameters. Additionally,
there is a consistent ordering of performance among the three lock-
free and fine-grained approaches: prefetching, then normal, then
padding. This suggests that the extra memory overhead and thus
increased working set size from padding dominates correcting the
false sharing issues. This intuitively makes sense with our levels
saved optimization avoiding the frequently contended cache lines
of higher levels on the SegTree.

For the lock-free implementation, prefetching achieves a 25%
to 107% speedup over the non-prefetching approach. This peaks
at a 2.07x speedup when the query proportion is 0.4. For the fine-
grained locking implementation, prefetching achieves a 13% to 81%
speedup over the non-prefetching approach, also peaking when the
query proportion is 0.4.

Computation Time of Implementations Across Query Proportion of Operations, Small
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Figure 6: Computation time across query proportions on
small trace.

Figure 6 shows the same computation time comparison across
query proportions as Figure 5 but on the small trace. The graphs are
incredibly similar, highlighting the consistent speedup that our par-
allel CPU implementations generate over the serial implementation
across different problem sizes.

4.3.4  Lock-free Prefetch Timing Breakdown. Table 2 shows an exe-
cution time breakdown of different components of lock-free prefetch.
This timing was done with the medium trace on the GHC machines
with the optimal hyperparameters. The components leaf update,

path update, query traversal, and barrier wait are average times
across all threads. Since the levels saved is computed by 1 thread,
that metric is summed. Total comp represents total computation
time.

Component 2 Threads | 4 Threads | 8 Threads
Leaf Update (ms) 3.10 2.05 1.40

Path Update (ms) 11.99 8.07 5.19
Query Traversal (ms) | 31.29 15.95 8.17
Barrier Wait (ms) 1.92 2.44 3.37
Levels Saved (ms) 1.58 1.72 1.76
Total Comp (ms) 61.85 37.28 24.22

Table 2: Lock-free prefetch time per component.

At lower thread counts, query traversal takes up a higher percent
of the total computation time: 51%, 43%, and 34% at 2, 4, and 8
threads respectively. As discussed earlier in this section, threads do
not compete for shared resources (locks, CAS access) since queries
are read only, which describes why these percentages decrease.

Total leaf update times are 6.2, 8.2, and 11.2 ms while total path
update times are 24, 32.3, and 41.52 ms. Total query traversal times
are 62.7, 63.8, and 65.4 ms. This matches the expectation that total
query time would stay near constant with more threads while total
update time would increase due to contention.

Component 2 Threads | 4 Threads | 8 Threads
Leaf Update (ms) 2.99 2.14 1.49

Path Update (ms) 28.67 21.49 14.65
Query Traversal (ms) | 31.15 16.20 8.02
Barrier Wait (ms) 0.63 1.58 5.13
Levels Saved (ms) 0.04 0.05 0.07

Total Comp (ms) 87.26 58.19 42.76

Table 3: Lock-free prefetch time per component with fewer
levels saved.

Throughout this paper, there has been an emphasis on the impact
of the levels saved. Table 3 displays the same information as Table 2
but with 8 levels saved instead of 14. Obviously, the total time spent
on updating the saved levels decreased to near 0, but this comes
with the path update time more than doubling for each thread count.
This tradeoff severely hurts total computation time, demonstrating
the clear impact of the optimization.

4.4 Nonconstant Combining Function Workload

In this section, we show results that differ from the constant com-
bining function results. The computation speedup graph in Figure
7 shows near perfect speedup. We attribute this to the fact that
the nonconstant combining function makes the workload compute-
bound.

4.4.1 Impact of a memory-bound workload on computation speedup.
In our constant combining function analysis, Figure 7 portrayed
poor scaling at higher thread counts. Our new analysis tells us that
this could be because the constant combining function workload
becomes memory-bound at higher thread counts, as the threads
have less computation to share at higher thread counts.
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Figure 7: Computation speedup over 1 thread, nonconstant
workload.

4.4.2  Impact of a memory-bound workload on the optimal levels
saved parameter. Identifying that our workloads in the constant
combining function analysis are memory-bound allows us to ex-
plain results that seemed initially confusing. For example, whether
the array size was small or medium did not seem to affect the opti-
mal levels saved parameter. In both cases, the number of unsaved
levels was equal across array sizes, being 3 unsaved levels for the
fine implementation and 5 unsaved levels for the lock-free imple-
mentation. This is counterintuitive since there are more nodes in
the medium array 2 levels up from the leaves (65,536) than there
are nodes in the small array 2 levels up from the leaves (16,384).
Therefore, there should be more contention in the smaller array,
assuming equal thread counts.

The fact that there are the same number of memory loads when,
independent of array size, we do not save 3 levels can explain this
phenomenon. This is further reinforced by our results in finding the
optimal number of levels saved, k, for the nonconstant workload,
shown in Table 4. These results show that the optimal computation
speedup is at different amounts of unsaved levels for different sized
arrays.

k  FINE, med FINE, small LF med LF, small
0 1 1 1 1

2 1.0647 1.0760 1.0630 1.0736
4 1.1396 1.1613 1.1381 1.1632
6 1.2237 1.2581 1.2225 1.2646
8 1.3187 1.3701 1.3175 1.3786
10 1.4200 1.4815 1.4189 1.4914
12 1.4992 1.5157 * 1.4967 1.5257
14 1.4288* 1.2450 1.4274 1.2525
16 0.9903 0.6327 0.9892 0.6353
18 0.4121 0.4109

Table 4: Comparison of fine and lock-free computation
speedups at different levels saved.

4.4.3 Impact of a memory-bound workload on prefetching. We show
our results for the computation speedup over zero levels in Figure

Lopez et al.

8. We see that there is a smaller degree of speedup (less than 2x
speedup over 0 levels saved) compared to the same result for the
memory-bound workload (greater than 6x speedup over 0 levels
saved). This is telling us that the speedup due to prefetching in
the memory-bound workload was much larger than that of the
compute-bound workload, which makes sense, since prefetching
helps hide time due to memory reads (by prefetching into our cache)
and writes (by prefetching in exclusive mode).

Computation Speedup Over No Levels Saved With Prefetching
== Fine CS, P=1 == LFCS, P=1
2.0

0.5

0.0

Figure 8: Computation speedup over no levels saved with
prefetching, nonconstant workload.

4.4.4  Final Performance Results. Figure 9 shows the computation
time comparison across query proportions. This graph is incredibly
similar to the same results for constant combining function work-
loads, indicating that no matter whether the workload is compute
or memory bound, the implementations provide a large speedup
over the serial implementation.
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Figure 9: Computation time across query proportions on
medium trace.

4.4.5 Nonconstant analysis takeaways. The nonconstant analysis
allowed us to further analyze constant analysis, and we learned that
our constant combining function workloads were highly memory-
bound.
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Coarse Impl. 30% 70% com/w/cpp/thread/mutex Accessed: 2025-04-28.
Cuda Levels Impl. | 85% 15%
Cuda Prefix Impl. | 60% 40%
Fine Impl. 50% 50%
Lock-free Impl. 50% 50%
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Add Prefetch 65% 35%
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PSC Testing 0% 100%
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Table 5: Distribution of work by task.
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